41 research outputs found

    From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. Here we present the identification of novel candidate genes for different potato tuber quality traits by employing a pooling approach reducing the number of hybridizations needed. Extreme genotypes for a quantitative trait are collected and the RNA from contrasting bulks is then profiled with the aim of finding differentially expressed genes.</p> <p>Results</p> <p>We have successfully implemented the pooling strategy for potato quality traits and identified candidate genes associated with potato tuber flesh color and tuber cooking type. Elevated expression level of a dominant allele of the β-carotene hydroxylase (<it>bch</it>) gene was associated with yellow flesh color through mapping of the gene under a major QTL for flesh color on chromosome 3. For a second trait, a candidate gene with homology to a tyrosine-lysine rich protein (TLRP) was identified based on allele specificity of the probe on the microarray. TLRP was mapped on chromosome 9 in close proximity to a QTL for potato cooking type strengthening its significance as a candidate gene. Furthermore, we have performed a profiling experiment targeting a polygenic trait, by pooling individual genotypes based both on phenotypic and marker data, allowing the identification of candidate genes associated with the two different linkage groups.</p> <p>Conclusions</p> <p>A pooling approach for RNA-profiling with the aim of identifying novel candidate genes associated with tuber quality traits was successfully implemented. The identified candidate genes for tuber flesh color (<it>bch</it>) and cooking type (<it>tlrp</it>) can provide useful markers for breeding schemes in the future. Strengths and limitations of the approach are discussed.</p

    SNP markers retrieval for a non-model species: a practical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SNP (Single Nucleotide Polymorphism) markers are rapidly becoming the markers of choice for applications in breeding because of next generation sequencing technology developments. For SNP development by NGS technologies, correct assembly of the huge amounts of sequence data generated is essential. Little is known about assembler's performance, especially when dealing with highly heterogeneous species that show a high genome complexity and what the possible consequences are of differences in assemblies on SNP retrieval. This study tested two assemblers (CAP3 and CLC) on 454 data from four lily genotypes and compared results with respect to SNP retrieval.</p> <p>Results</p> <p>CAP3 assembly resulted in higher numbers of contigs, lower numbers of reads per contig, and shorter average read lengths compared to CLC. Blast comparisons showed that CAP3 contigs were highly redundant. Contrastingly, CLC in rare cases combined paralogs in one contig. Redundant and chimeric contigs may lead to erroneous SNPs. Filtering for redundancy can be done by blasting selected SNP markers to the contigs and discarding all the SNP markers that show more than one blast hit. Results on chimeric contigs showed that only four out of 2,421 SNP markers were selected from chimeric contigs.</p> <p>Conclusion</p> <p>In practice, CLC performs better in assembling highly heterogeneous genome sequences compared to CAP3, and consequently SNP retrieval is more efficient. Additionally a simple flow scheme is suggested for SNP marker retrieval that can be valid for all non-model species.</p

    Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids

    Get PDF
    BACKGROUND: Genetic studies in allopolyploid plants are challenging because of the presence of similar sub-genomes, which leads to multiple alleles and complex segregation ratios. In this study, we describe a novel method for establishing the exact dose and configuration of microsatellite alleles for any accession of an allopolyploid plant species. The method, named Microsatellite Allele Dose and Configuration Establishment (MADCE), can be applied to mapping populations and pedigreed (breeding) germplasm in allopolyploids. RESULTS: Two case studies are presented to demonstrate the power and robustness of the MADCE method. In the mapping case, five microsatellites were analysed. These microsatellites amplified 35 different alleles based on size. Using MADCE, we uncovered 30 highly informative segregating alleles. A conventional approach would have yielded only 19 fully informative and six partially informative alleles. Of the ten alleles that were present in all progeny (and thereby ignored or considered homozygous when using conventional approaches), six were found to segregate by dosage when analysed with MADCE. Moreover, the full allelic configuration of the mapping parents could be established, including null alleles, homozygous loci, and alleles that were present on multiple homoeologues. In the second case, 21 pedigreed cultivars were analysed using MADCE, resulting in the establishment of the full allelic configuration for all 21 cultivars and a tracing of allele flow over multiple generations. CONCLUSIONS: The procedure described in this study (MADCE) enhances the efficiency and information content of mapping studies in allopolyploids. More importantly, it is the first technique to allow the determination of the full allelic configuration in pedigreed breeding germplasm from allopolyploid plants. This enables pedigree-based marker-trait association studies the use of algorithms developed for diploid crops, and it may increase the effectiveness of LD-based association studies. The MADCE method therefore enables researchers to tackle many of the genotyping problems that arise when performing mapping, pedigree, and association studies in allopolyploids. We discuss the merits of MADCE in comparison to other marker systems in polyploids, including SNPs, and how MADCE could aid in the development of SNP markers in allopolyploids

    Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tomato (<it>Solanum lycopersicon</it>) and potato (<it>S. tuberosum</it>) are two economically important crop species, the genomes of which are currently being sequenced. This study presents a first genome-wide analysis of these two species, based on two large collections of BAC end sequences representing approximately 19% of the tomato genome and 10% of the potato genome.</p> <p>Results</p> <p>The tomato genome has a higher repeat content than the potato genome, primarily due to a higher number of retrotransposon insertions in the tomato genome. On the other hand, simple sequence repeats are more abundant in potato than in tomato. The two genomes also differ in the frequency distribution of SSR motifs. Based on EST and protein alignments, potato appears to contain up to 6,400 more putative coding regions than tomato. Major gene families such as cytochrome P450 mono-oxygenases and serine-threonine protein kinases are significantly overrepresented in potato, compared to tomato. Moreover, the P450 superfamily appears to have expanded spectacularly in both species compared to <it>Arabidopsis thaliana</it>, suggesting an expanded network of secondary metabolic pathways in the <it>Solanaceae</it>. Both tomato and potato appear to have a low level of microsynteny with <it>A. thaliana</it>. A higher degree of synteny was observed with <it>Populus trichocarpa</it>, specifically in the region between 15.2 and 19.4 Mb on <it>P. trichocarpa </it>chromosome 10.</p> <p>Conclusion</p> <p>The findings in this paper present a first glimpse into the evolution of Solanaceous genomes, both within the family and relative to other plant species. When the complete genome sequences of these species become available, whole-genome comparisons and protein- or repeat-family specific studies may shed more light on the observations made here.</p

    Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations

    Get PDF
    Background - The establishment of mutant populations together with the strategies for targeted mutation detection has been applied successfully to a large number of organisms including many species in the plant kingdom. Considerable efforts have been invested into research on tomato as a model for berry-fruit plants. With the progress of the tomato sequencing project, reverse genetics becomes an obvious and achievable goal. Results - Here we describe the treatment of Solanum lycopersicum seeds with 1% EMS and the development of a new mutated tomato population. To increase targeted mutant detection throughput an automated seed DNA extraction has been combined with novel mutation detection platforms for TILLING in plants. We have adapted two techniques used in human genetic diagnostics: Conformation Sensitive Capillary Electrophoresis (CSCE) and High Resolution DNA Melting Analysis (HRM) to mutation screening in DNA pools. Classical TILLING involves critical and time consuming steps such as endonuclease digestion reactions and gel electrophoresis runs. Using CSCE or HRM, the only step required is a simple PCR before either capillary electrophoresis or DNA melting curve analysis. Here we describe the development of a mutant tomato population, the setting up of two polymorphism detection platforms for plants and the results of the first screens as mutation density in the populations and estimation of the false-positives rate when using HRM to screen DNA pools. Conclusion - These results demonstrate that CSCE and HRM are fast, affordable and sensitive techniques for mutation detection in DNA pools and therefore allow the rapid identification of new allelic variants in a mutant population. Results from the first screens indicate that the mutagen treatment has been effective with an average mutation detection rate per diploid genome of 1.36 mutation/kb/1000 line

    Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Get PDF
    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results: Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion: As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking

    A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH).</p> <p>Results</p> <p>First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps <it>in silico </it>anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map.</p> <p>Conclusions</p> <p>The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches.</p

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore